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Abstract--We describe a method of correcting both 

random and systematic timebase errors using measurements 
of only two quadrature sinusoids made simultaneously with a 
waveform of interest.  We estimate the fundamental limits to 
our procedure due to additive noise and sampler jitter and 
demonstrate the procedure with some actual measurements.  
 

Index Terms--jitter, sampling oscilloscope, timebase 
distortion, waveform metrology, comb generator 

I. INTRODUCTION 
High-speed sampling oscilloscopes suffer from 

systematic timebase distortion (TBD) and random jitter that 
cause errors in the time at which samples of a signal are 
acquired.   We propose an alternative timebase, for use with 
equivalent-time sampling oscilloscopes, that greatly reduces 
both TBD and jitter. The new timebase relies upon 
simultaneous measurement of the signal of interest, and two 
reference sinusoids that are in quadrature and phase-locked 
to the signal of interest that serve to determine the actual 
time at which the measurement was performed [1]. The 
conventional timebase of the oscilloscope is used to 
characterize distortion in the two reference sinusoids, and to 
determine within which half-cycle of the auxiliary sinusoids 
the signal was measured.  The new timebase is estimated 
from the sinusoids using a weighted “error-in-variables” 
approach that accounts for relative contributions of additive 
noise and timing error. 

Sampling oscilloscopes that have a form of jitter 
correction based on quadrature sinusoidal reference signals 
are described elsewhere in the literature [2], and sampling 
oscilloscopes with similar functionality have recently 
become commercially available [3, 4].  Our implementation 
achieves the advantages of these systems, including a 
residual jitter of about 200 fs, correction of time records 
with nearly arbitrary length, and application to 
measurement of signals at almost any frequency.  
                                                           

P. D. Hale is with the Optoelectronics Division, National 
Institute of Standards and Technology, Boulder, CO, 80305 USA (e-mail: 
hale@boulder.nist.gov). 

C. M. Wang is with the Statistical Engineering Division, 
National Institute of Standards and Technology, Boulder, CO, 80305 USA. 

D. F. Williams, K. A. Remley, and J. Wepman are with the 
Electromagnetic Technology Division, National Institute of Standards and 
Technology, Boulder, CO, 80305 USA. 

Publication of the U. S. Government, not subject to U.S. 
copyright. 
 

Furthermore, our method is inexpensive, since it can be 
implemented with an older generation of standard 
equipment.  Our method corrects for both random jitter and 
systematic timebase distortion, and provides the user with 
an estimate of the residual timing error after the correction 
process has been applied. Also our technique is 
nonproprietary and is described and characterized here, for 
the first time, in the open archival literature.  

In an oscilloscope the timing error at the ith 
sample, yi, is the sum of the systematic TBD, hi, and 
random timing jitter error τi.  Thus the ith sample of the 
signal of interest g, as a function of time, is given by 
 ( ) ,i i i i iy g T h τ ε= + + +  (1) 
where ( 1)i sT i T= − is the target time of each sample, Ts is 
the target time interval between samples, and εi is additive 
noise.  We assume the jitter and additive noise are 
independent zero-mean random variables with variances 

2
τσ  and 2

εσ .  
The problem of estimating jitter and correcting for 

its effects has been addressed by many authors [5-9].  The 
typical approach is to obtain the signal variance of 
independent, repeated measurements and use the 
approximate model [10] 
 ( ) ( )( )22 2var τ εσ σ′≈ +i iy g t  (2) 

to solve for 2
τσ .  Here ( )′ ig t is the derivative of ( )ig t  

evaluated at i i it T h= + .  It is usually assumed that, upon 
averaging, the jitter acts as a low-pass filter so that the 
average signal is the convolution of the  signal ( )ig t and the 
probability density function ( )ip  of the jitter:  

 ( ) ( ) ( ) .i ig t g t p dτ τ τ= −∫  (3) 
The effects of jitter are then removed by deconvolution [5]. 
 This approach has the following problems:  

a) Measurements must be repeated to find the 
measurement mean and variance.  

b)  Estimates of the jitter variance from (2) are 
generally biased (for example, see [9]). 

c) ( )ip  must be known. 

d)  ( )ip  must be the same over the entire measured 
waveform. 

e)  The averaging process removes some of the 
inherent bandwidth from the measured signal, 
making the deconvolution subjective[11, 12].   
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f) Deconvolution is an “ill-posed” problem [12], so 
that in the presence of noise there is no unique 
solution.   
Generally, it is desirable to avoid deconvolution, 

particularly in cases where the jitter is large, varies over the 
measurement time window, or has a non-Gaussian 
probability density.  All these situations make deconvolving 
the jitter from (3) problematic. 

The problem of estimating TBD has also been 
studied by many authors [13- 20].  Recent work [17- 20]   
has used a nonlinear least-squares approach that fits 
multiple measured sinusoids with multiple phases and 
frequencies to a distorted sinusoid model.  This approach 
performs well at discontinuities in the TBD and allows 
simultaneous estimation of the harmonic distortion, if any, 
in the measured sinusoids.  The distorted-sinusoid model, 
with harmonic number nh, is given by [18] 

 
( )

( )
1

cos 2

sin 2 ,

hn

ij j jk j ij
k

jk j ij ij

y kf t

kf t

α β π

γ π ε
=

= + 

+ +

∑
 (4) 

where jf  is the fundamental frequency of the jth measured 
waveform yij at the ith nominal time, ij i i ijt T h τ= + + . The 
random jitter is τij and εij is random additive noise.  The 
values of jα , jkβ , jkγ , and ih  can be estimated, by use of 
a weighted least-squares approach [18].   To obtain a 
solution using this approach, we typically measure a set of 
sinusoidal waveforms at two or three different frequencies.  
Each set includes two sinusoids, of a given frequency, that 
are approximately in quadrature.  Hence, each set can have 
up to four or six waveforms for which ijε  and ijτ  are 
different for all i and j.  When estimating TBD we generally 
average over several measurement sets to average over 
different realizations of ijε  and ijτ  and reduce the 
uncertainty due to random jitter and additive noise.  
Averaging over several measured waveforms is also 
required in the methods described in [18] and [19]. 

 In the present work, however, we are interested in 
the total timebase error, i.e. the sum of the TBD and the 
jitter in an individual realization of a measured waveform.  
We use all of the information in the sinusoid to find the 
distortion (that is, we estimate jα , jkβ , and jkγ ) and the 
timebase ( ih and ijτ ) simultaneously so that the measured 
dependent variable (yij) best corresponds to the values of the 
distorted reference sinusoids with the new timebase.   In 
this case, no averaging is involved. 

A simple illustration is shown in Fig. 1, which 
plots uncorrected measurements (circles) of a reference 
sinusoid with an estimate of the distorted sinusoid (solid 
curve). Each circle represents a sample at time 

i i i it T h τ= + +  , with each iτ  a realization of a random 
process. The estimated sinusoid is found by minimizing the 
average “distance” between the samples and the sinusoid.  
If we assume, for illustrative purposes, that there is no 
additive noise, we can estimate the total time error due to 
timebase distortion and jitter by drawing a horizontal line 
between each measurement (circles) and the distorted 
sinusoid.  The length of each line represents the difference 
between the nominal (oscilloscope) time at which the 
measurement was taken and the time as determined by the 
distorted sinusoidal fit.  The time that each line intersects 
the distorted sinusoid is the corrected time for each sample.  
Once the timebase error is known for each it , it can be 
applied to a simultaneously measured signal of interest if 
the timing errors of the simultaneous measurements are 
sufficiently correlated. In the next section we discuss how 
this correlation is achieved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time 
Figure 1.  Circles show sampled signal using distorted 
and jittered oscilloscope timebase and the solid curve 
shows the estimated distorted sinusoid.  Horizontal 
lines show difference between the time estimated from 
the curve and the nominal oscilloscope timebase. 



hale_compensation_of_timing_errors_rev2.doc 3 of 10 7/27/2005  5:27 PM 

 

II. SYSTEM FOR MEASURING AND CORRECTING  TIMEBASE 
ERRORS 

 
 Fig. 2 shows a generalized schematic of the signal 

generator and sampling system for correcting timebase 
errors.  The reference oscillator generates a sinusoid with 
frequency f.  The waveform generator and trigger generator 
are synchronized to the reference oscillator. We adjust the 
delay D so that the signal propagation delay between the 
signal generator and samplers 1 and 2 is roughly the same 
as the delay between the signal generator and sampler 3.  
This is done to ensure minimal impact of the signal 
generator phase noise and maximal correlation between the 
reference sine waves and the waveform generator. 

We take advantage of the parallel design of many 
equivalent-time sampling oscilloscopes.  In such an  
oscilloscope, the sampling process proceeds as follows 
[21,15]: (a) the timebase is armed to trigger on a rising or 
falling edge at a certain level, (b) a pulse with the desired 
characteristics is sent into the trigger input, triggering the 
timebase, (c) the timebase (delay generator) waits for a 
predefined time delay, and then (d) the timebase generates a 
drive (strobe) pulse that is split and sent simultaneously to 
all the samplers in the oscilloscope mainframe. A 
waveform is sampled by incrementing the time delay by a 
nominal increment Ts and repeating the process.  A result of 
the parallel architecture is that any jitter on the trigger pulse 
or the timebase delay generator is common to the sampling 
time of all the samplers in the oscilloscope mainframe.   

In Fig. 2, we show the sources of jitter, measured 
relative to an absolute reference oscillator.  They include 

(1)τ  and (2)τ , which are the jitter of the reference signals.  
We expect that these have the same statistical properties 
(mean of 0 and standard deviation (1) (2)σ σ ), although 
their individual realizations for the ith sample might  differ 

slightly.  The value of (3)τ  is the jitter of the generated 
waveform we want to measure and has mean 0 and standard 
deviation (3)σ .  The value of ( tr )τ  is the jitter of the trigger 
generator and timebase generator circuit and has mean 0 
and standard deviation (tr)σ .  We also include a jitter 

( )1, 2, 3Sx xτ = for the actual sampling process for each of 
the samplers, with mean 0 and standard deviation 

(S1) (S2) (S3)σ σ σ .  
When the samplers are simultaneously fired from 

the same trigger event, the different jitter components 
contribute to the sampled signals as follows: 

 

( ) ( )
( ) ( )
( ) ( )

(1) (S1) (tr )
1 1

(2) (S2) (tr)
2 2

(3) (S3) (tr )
3 3 .

i i i i i i

i i i i i i

i i i i i i

S t S T h

S t S T h

S t S T h

τ τ τ

τ τ τ

τ τ τ

= + + + +

= + + + +

= + + + +

 (5) 

We note that ih  and ( tr )
iτ  are common to all the 

simultaneously strobed samples.  Hence, if (tr ) ( )xσ σ  and 
(tr ) (S )xσ σ  (x=1, 2, 3), ( tr )

iτ  is the dominant source of 
jitter and we can approximate τij as ( tr )

iτ .  Furthermore, if 
we can estimate ih  and realizations of ( tr )

iτ  from the known 
sinusoidal signals ( )1 iS t  and ( )2 iS t , we can apply our 

estimate to the third waveform, ( )3 iS t , and compensate for 
timing errors in its measurement.   

III. ESTIMATING RANDOM JITTER 
 

Our approach to estimating the timing errors in (4) 
is to apply the so called errors-in-variables [22] or 
orthogonal distance regression (ODR) [23] to the model in 
(4). In this approach, the distorted sinusoid model is fit to 
the data with the assumption that both “dependent” (yi) and 
“independent” (tij) variables are subject to errors.  
Specifically, let yi1 and yi2 be the ith samples of nearly 
quadrature sinusoids measured simultaneously with the 
signal of interest.  Denote the total timing error as 

ij i ijhδ τ= + , 1, 2j = . Then 1iδ  and 2iδ  are the timing 
errors of the two sinusoid measurements.  Because the 
samplers are driven by a common strobe pulse, as described 
in the previous section, we assume equal timing errors in 
channels 1 and 2.  That is, we assume 1 2i i iτ τ τ= = , and 
hence i ij i ihδ δ τ= = +  and i ij i it t T δ= = + .   We 
rewrite ijy , given in (4), as a function F of 

( )1 1, ,
h hj j j jn j jnα β β γ γ=θ … …   as 

 ( ); .ij i i j ijy F T δ ε= + +θ  

 Estimates of timing errors iδ are readily available 
from the ODR fit of the model using ODRPACK [23]. 
Although other numerical packages may also work for this 
application, ODRPACK has been extensively tested, shown 
to work well, and is freely available [24].  The ODR 

Figure 2.  Schematic diagram of generic system used 
to measure and correct oscilloscope timebase errors.   
The reference generator, waveform generator, and 
trigger generator are synchronized. Various sources of 
jitter are labeled as τ(•).  
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procedure obtains the best-fit model for this problem by 
minimizing  the error function 
 

( )

( ) ( )( )

2 2 2
1 2 1 2

1

2 2 2
1 1 2 2

1

( , , )
2

; ;
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i i i
i

n

i i i i i i i
i

w
E w

w
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∑

∑
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with respect to 1θ , 2θ , and ( )1, , nδ δ=δ … .   
 The weights wε and wδ  are inversely proportional 
to the variances 2

εσ  and 2
δσ . That is 2

1w cε εσ=  and 
2

2w cδ δσ= . If the TBD does not vary greatly or an 
adequate TBD estimate is available as an initial guess of the 
timebase error iδ , then 2 2

δ τσ σ≈  and 2
2w cδ τσ= . 

Constants 1c and 2c  are chosen so that ( )2 2
1 21

2n
i ii

wε ε ε
=

+∑  

and 2
1

n
ii

wδ δ
=∑  are about the same. Since 

( )2 2 2
1 21

2n
i ii

n εε ε σ
=

+ ≈∑ and 2 2
1

n
ii

n τδ σ
=

≈∑ , we have 

1 2c c= . Let 2
1 2c c τσ= = , and use 2 2wε τ εσ σ=  and 1wδ =  

in the estimation of timing error. We note that with these 
weights and the assumptions that ijε  (j=1,2) and iδ  are 

normally distributed with mean 0 and variances 2
εσ  and 

2
τσ , the least-squares estimators of 1θ , 2θ , and δ  are also 

maximum likelihood estimators. Further discussions on the 
use of the weights are given in the Appendix.  

IV. PRACTICAL CONSIDERATIONS 
 

This ODR approach works well for most of the 
data we observe in our laboratory and requires only two 
nearly quadrature sinusoids.  There are instances, however, 
where the ODR approach produces unsatisfactory results.  
This is the case when the waveform is very long, there are 
only a few samples per cycle of the sinusoid, or when the 
TBD is large (compared to the jitter).  In such cases, we use 
an estimate of the TBD as an initial guess for the total 
timebase error to help the ODR routine converge to a 
solution. This initial TBD estimate requires additional 
measurements of quadrature sinusoids at different 
frequencies.  These additional measurements need not be 
made simultaneously with the signal of interest. Criteria for 
frequency selection for the TBD estimate are described in 
detail in [17].  

Additive noise on the reference sinusoids can be a 
source of error in any timebase error correction.  From   (2) 
we see that the frequency f of the sinusoid g(t) should be 
chosen such that ( )( )22 2g tτ εσ σ′ >  over most of the 
sinusoid.  That is, to achieve good discrimination between 
jitter  and additive noise, the slew rate must be high enough 
so that the jitter becomes the dominant noise process for 
most of the sinusoid.  For our sinusoid, we require 

( )22 22 fAτ εσ π σ> , or 2 f Aτ επ σ σ> , where A is the 

amplitude of the sine wave.  We will discuss this bound 
further in the next section. 

  From the above discussion we conclude that we 
want f as large as possible. However, since we need to 
discriminate between half-cycles of the reference sine 
waves, we also require that 1 (2 )fτσ  to make the 
probablility of shifting a point to the wrong quarter cycle 
acceptably small.  Combining these limits and rearranging 
gives us practical bounds for selecting the frequency of the 
reference sinusoid: ( )1 2 2f Aτ εσ σ π> . 

 We can estimate an upper bound for the root-
mean-square (RMS) residual timing error (after correction) 
e∆  due to additive noise, in the limit of zero jitter, as 

( )2e fAεσ π∆ = .  For a 10 GHz sinusoid and 

( ) 0.1%Aεσ = , 1%, and 5%, we obtain 0.016 pse∆ = , 
0.16 ps, and 0.8 ps, respectively.   

V. SIMULATION STUDIES 
 
We used simulation to investigate the proposed 

method for estimating the timing error and the fundamental 
limits imposed by additive noise.  The criterion used in the 
comparisons is the amount of timing error remaining in a 
waveform of interest after both random and systematic 
timebase errors were corrected using the estimation 
procedure. 

Recall from (1) that 
 .i i i it T h τ= + +  

With estimates (denoted by ^) of the TBD, îh , and the 
realization of the jitter, îτ , obtained by the estimation 

procedure, our estimate of it is then given by 

 ˆˆ ˆ .i i i it T h τ= + +  
The remaining timing errors can be characterized by the 
sample standard deviation, s∆ , of  

 ( )ˆˆ ˆ ,i i i i i i it t h hτ τ∆ = − = + − +  

where ih  and iτ are the actual TBD and jitter used in the 
simulation.  

We generated sinusoids according to (4) to 
simulate actual measurements. The simulation parameters 
used here, including TBD, are closely related to those we 
observe in our laboratory.  We used a time-measurement 
window (waveform epoch) of 52 ns with 53248 samples.  
Since the TBD would be large for this long time record, we 

Table 1. Amplitude of fundamental and harmonics used in 
the simulation study 

Harmonic amplitude, V Fundamental 
frequency, 

GHz Fundamental Second 
harmonic 

Third 
harmonic 

10.0000 0.150 0.0006 0.007 
  9.8855 0.150 0.0006 0.007 
10.2855 0.150 0.0002 0.0003 
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estimated TBD and used it as an initial guess for the total 
time error. We generated 100 sets of 6 sinusoids, including 
0° and 90° phases at three different frequencies.  The signal 
frequencies and amplitudes are given in Table 1, along with 
the amplitude of the harmonics (nh=3). In each simulation 
experiment, the additive noise was generated using a 
normal distribution with mean 0 and standard deviation εσ . 
The random jitter was generated using a normal distribution 
with mean 0 and standard deviation τσ .  We also saved the 
nominal realization of the random jitter for the purpose of 
calculating i∆ and s∆ .  

 Figure 3  shows s∆  from each of the 100 
simulations of the 10 GHz 0° sinusoids for each 
combination of εσ = 0.1%, 1.0 %, and 5.0% of the 
fundamental amplitude and τσ = 0.1ps, 1.6 ps, 3.2 ps, and 
6.4 ps used in the simulation experiments.  Figure 3 shows 
that our procedure is effective for correcting the timing 
errors even in the presence of additive noise. Using the 
proper weighting for low initial jitter, allows us to achieve 
s∆  that is comparable to or below the simple estimate e∆ . 
In contrast, forthe case of larger initial jitter, s∆  was 
approximately bounded by  e∆ .  

Discussion of some particular cases in Fig. 3 is 
useful. For the case of  τσ =0.1 ps and εσ =5.0% of the 
fundamental amplitude we have 

( )0.001 2 0.008f Aτ εσ σ π= < =  violating our practical 
guidelines from Section IV.  In this case, our simulations 
show that s τσ∆ > .  For the case of  τσ =1.6 ps and 

εσ =5.0% of the fundamental amplitude we have 
0.016f τσ = , which is about two times larger than 

( )2 0.008Aεσ π = .  In this case, our simulations show s∆  
roughly a factor of two smaller than τσ .  Finally, in the 
case of very small initial additive noise, our simulations 
show the sample standard deviation s∆  of the timing errors 
to be on the order of 0.02 ps.  We will show in section VI 
that we can not achieve such low residual timing error 
because the jitter due to the samplers themselves becomes 
significant.  

We plot one of the simulated 10 GHz 0° sinusoids 
with and without correcting the timing errors in Fig. 4.  The 
long waveform (520 periods in our simulated experiments) 
is shown as a series of overlapping short waveforms (2 
periods in this example), similar to an eye pattern. The 
widely scattered points are the sinusoid generated with 

3.2 psτσ =  and 1%εσ =  of the amplitude. The overlaying 
(lightly shaded) points are the sinusoid after correction for 
timebase errors.  It can be seen from Fig. 4 that after 
correction, the errors have been collapsed to such a small 
level that they can-not be resolved on this scale. 

We next consider the effects of using the incorrect 
harmonic order in the estimation procedure. In general, the 
harmonic distortion that is not accounted for will have the 
same effect as having an inflated additive noise, with the 
magnitude of the effect depending on the magnitude of the 
distortion that is not accounted for.  As an example, we 
simulated a signal with 3.2 psτσ = , 1%εσ =  of the 
fundamental amplitude, but 5hn = , and with the 
amplitudes of the actual 4th and the 5th harmonics equal to 
those of the 2nd and the 3rd. If we use only three harmonic 
terms to correct the timing errors, the mean value of s∆  (for 
100 simulations) is about 1.167 ps, a substantial increase 

0 1.6 3.2 4.8 6.4
στ, ps

0.01

0.1

1
s ∆

, p
s

 0.1% 

1% 

5% 

Figure 3.  Sample standard deviation for all 100 
simulated data sets for each of 12 different combinations 
of σε and στ.  Individual symbols are not resolved in this 
figure.  

Figure 4. Plot of one of the simulated 52 ns long 10 
GHz 0° sinusoids with (light dots) and without 
(black dots) correcting timing errors. See text for 
explanation. 
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from 0.165 ps (given in Fig. 3).  However, if harmonic 
distortion in the 4th and the 5th is negligible we do not see 
a substantial increase. For example, if the amplitudes of the 
4th harmonic for all three frequencies are all 0.1 mV, and 
the amplitudes of the 5th harmonic of the three frequencies 
are 0.7 mV, 0.7 mV, and 0.1 mV, then the resulting mean 
value of s∆  is only 0.196 ps.  It is therefore necessary to 
have some knowledge of the number of harmonics, nh, 
which can be obtained using the method described in [18].  
 Weighted least-squares procedures [17-19] can 
also be used in place of the ODR procedure to estimate the 
timebase error. We used 100 simulated data sets having 

0.1%εσ =  of the fundamental amplitude and 1.6 psτσ =  
to compare the performance of the weighted least-squares 
and the ODR procedures. We first estimated the TBD based 
on the 100 measurement sets at all the three frequencies. If 
we used this TBD estimate as the final timebase error 
without further adjustments, the mean of the 100 s∆  was 
found to be 1.598 ps, which, as expected, is in agreement 
with the initial jitter standard deviation of 1.6 ps. We then 
used this TBD estimate as the initial timebase error and 
employed the weighted least-squares [18] on each of the 
one-hundred 10 GHz  measurements to estimate the final 
timebase error. The weight used for iy  is the reciprocal of 

( )( )22 2
ig tε τσ σ′+ . The mean of the 100 s∆  was found to be 

0.84 ps, which is substantially larger than the mean of the 
100 s∆  obtained using the ODR approach (see Fig. 3). 

The difference in performance between the 
weighted least-squares and the ODR approaches may lie in 
the implementation of the procedures. The algorithm 
implemented in the public-domain software package, 
ODRPACK, is an efficient and stable trust-region 
procedure [25]. It is more convenient to specify the model 
and incorporate the assumption of having common jitters 
between the two nearly quadrature sinusoids using the ODR 
approach. In addition, the package contains many error-
checking facilities as well as an automatic scaling algorithm 
and has been extensively tested.   

VI. EXPERIMENTAL STUDIES 

In this section we describe experiments that verify 
our compensation technique.   These are example 
measurements where timebase correction is particularly 
important, including cases with large jitter or long time 
windows where TBD can give significant errors.   

A. Experimental Study 1: A single sinusoid 
We tested the assumption that the trigger and 

timebase generator are the dominant sources of jitter 
( (tr ) (S )xσ σ ), which is necessary for our method to be 
useful, by measuring an “unknown” sinusoid (on sampler 3 
of Fig. 2) that was split from the 10 GHz reference signal 
generator using a 3 dB splitter. The other output of the 
splitter was further split in a hybrid coupler to provide 0°  
and 90°  reference signals to samplers 1 and 2 of Fig. 2. 

The reference signals were provided by the clock output of 
a digital pattern generator and the oscilloscope was 
triggered at 1/16 of the clock frequency using the trigger 
output of the pattern generator. After measuring 50 sets of 
these 3 sinusoids, we changed the reference frequency to 
the others listed in Table 1 and measured 50 sets of 0°  and 
90° sinusoids at those frequencies as well.  Using the jitter 
estimation software in the oscilloscope, we estimated the 
jitter of the uncorrected measurement to have standard 
deviation of about 3.3 ps.  From a separate measurement, 
with no input to samplers 1 and 2, we found the RMS 
additive noise was about 0.3% of the reference signal 
amplitude. 

Because the sinusoid to be corrected and the 
reference signals are derived from the same source, we 
expect that the jitters (1)

iτ , (2)
iτ , and the jitter (3)

iτ  of the 
“unknown” sinusoid are highly correlated and, therefore, 
nearly equal.  Hence, we expect this experiment to be 
insensitive to these parameters, with the remaining jitter 
being predominantly due to the jitter ( )1, 2, 3Sx xτ =  in the 
samplers. 

Because of the long time record used in this 
experiment, we calculate the TBD as an initial guess for the 
ODR routine using nh=3  and all three measured 
frequencies. Figure 5 shows a section of five of the 10 GHz 
sinusoids measured by the third sampler before (bottom) 
and after (top) correction for timebase errors.  The 
uncorrected measurement has a discontinuity at 4 ns, due to 
timebase distortion, and the random noise is large where the 
slope is large, indicating significant jitter in the 
measurement. The corrected sinusoids have the 
discontinuity removed and exhibit noise that is greatly 
reduced and evenly distributed in time.   Note that the 
waveforms shown in Fig. 5 have not been averaged. 

We cannot use the procedure described in Section 

Figure 5.  Portion of  five sinusoids measured on 
sampler 3 before (bottom) and after (top) correction for 
time-base errors.  The offset between the curves has 
been added for clarity. 
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IV to evaluate the residual timing error because, for 
experimental data, both ih  and iτ  are unknown.  If the 
waveforms of interest are known to be sinusoidal, as in this 
example, we can use the ODR procedure [23] to obtain an 
estimate of the residual timing error after correction.  This 
is obtained from a sum of squares of the residuals of the 
ODR fit in the “independent” ( ijt ) variable. The mean of 

the sample  standard deviations of the residuals in ît  
obtained from an ODR fit to  50 sinusoids measured in 
sampler 3 was found to be 0.2 ps.  Thus, our experimental 
results show a jitter considerably larger than the numerical 
results of Fig. 3. From this we conclude that the jitter (S )xτ  
of the samplers is not negligible but is still much smaller 
than the original jitter in the measurement.  We estimated 
the jitter of one of the samplers using the estimated 
numerical limit of 0.021 ps, for our initial jitter and additive 
noise from Fig. 3, as 2 20.2 0.021 2 0.14 ps− = , where 

we have divided by 2  to reflect the even distributed of 
the jitter between sampler 3 and the sampler that is 
predominantly used as the reference signal for any given 
sample. This gives an estimated  lower bound to our 
timebase correction due to sampler jitter; 0.14 2 0.2≈  ps. 
Although the sampler jitter is not negligible, it is 23 times 
smaller than the initial jitter in this experiment and about a 
factor of 6 smaller than the lowest jitter we observe in any 
of our laboratory measurements. We conclude that ( )trσ  is 
sufficiently large compared to ( )Sxσ  and therefore expect 
reduced timebase error by using our procedure. 

B. Experimental Study 2: Fast transient with jitter 
In some measurement situations, such as those 

requiring averaging, (3) shows that jitter will blur details of 

a fast transient event, such as the output of a comb 
generator used for calibrating various high-speed 
measurement equipment.  In the context of this work, 
measurement of  a fast transient allows us to use (2) to 
obtain an estimate of the residual jitter, after our correction, 
that is independent of the ODR algorithm.  As stated before, 
jitter estimates made using (2) will have some bias, but 
have sufficient accuracy for the present purposes. 

To generate our fast transient, we used a 6 GHz 
signal generator to drive a nonlinear transmission line 
(NLTL).  The NLTL was configured to steepen the falling 
edge of the generated sinusoid, giving a fast transient with a 
6 GHz repetition rate.  The output of the signal generator 
was split between a countdown trigger generator, used to 
trigger the oscilloscope, the NLTL, and a hybrid coupler 
whose outputs were used as the reference signals on 
samplers 1 and 2.  The measured transient from the NLTL 
(without deconvolution of the oscillscope impulse response) 
has roughly a 9 ps fall time. 

By changing the trigger level of the oscilloscope 
we can change the root mean square (rms) jitter from about 
1.4 ps to more than 8.6 ps (as measured by the 
oscilloscope).  Additive noise on the reference signals was 
about 0.4% of the sinusoid amplitude. Figure 6 shows 50 
measurements of the waveform generated by the NLTL 
before averaging (black dots) and after averaging (noisy 
gray line) for the case where the rms jitter is 8.6 ps.  The 
light smooth curve in Fig. 6 is the result of the following 
correction and averaging procedure: (a) each of the 50 
waveforms was corrected for timebase errors, (b) each 
corrected waveform was linearly interpolated back to the 
original evenly spaced time grid, and (c) the resulting 
curves were averaged.  This estimated waveform has much 
less noise but has ripple, ringing, and sharp features that are 
blurred in the corresponding average of the uncorrected 
measurements.   

Figure 7 shows an expanded view of the waveform 
after applying our procedure, with three different initial 
values of jitter.  Notice that the curves lie nearly on top of 
each other.  Because the ringing and ripple are accurately 
represented in each reconstructed waveform, these features 
are not artifacts of the signal processing, as might be 
expected with some kinds of regularized noncausal 
deconvolution [11].   

 Closer inspection of the curves in Fig. 7 shows 
systematic time differences in the curves that increase with 
initial jitter, but  are still substantially less than the initial 
jitter.  The two lowest jitter curves typically agree to within 

Figure 6.  Comparison of raw measurement (black 
dots), averaged measurement (noisy gray line), and 
timebase-corrected and averaged measurement (smooth 
light line). 

Table 2.  Residual jitter on measured NLTL waveform 

Initial rms jitter as 
measured on 

oscilloscope, ps 

Residual rms jitter after 
correction, ( 2 2w τ εσ σ=  ), ps 

1.4 0.15 
3.0 0.20 
6.3 0.25 
8.6 0.25 
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100 fs, while the lowest and highest jitter cases differ by as 
much as 1.1 ps at some times.  This systematic difference 
between the high- and low-jitter cases  may be caused by 
the high noise level of the high jitter case which leads to 
poor estimation of the harmonic content in the reference 
signal. It should be noted that 8.6 ps is on the order of 3 to 
10 times larger than the jitter we observe in typical 
measurements. Further investigation of this source of error 
is beyond the scope of this work. The calculated fall times 
(10-90% of peak-to-peak transition durations) of all four 
cases are indistinguishable.  

Because we do not have an analytic expression for 
the fast transient, we cannot use the ODR approach to 
estimate the residual timing error in its measurement after 
correction. To estimate the residual jitter in the transient 
measurement we used (2) on the corrected and linearly 
interpolated waveforms.  Interpolation to a uniform grid 
allows us to estimate the variance and derivative at a given 
time, as is needed in (2).  The results of our estimate are 
shown in Table 2.  We observe that the results for the 
experiments with most similar initial jitter (3.2 ps in 
sinusoidal experiment, 3.0 ps in NLTL experiment) are in 
good agreement; both have 0.2 ps residual jitter after 
correction and include the same amount of error from 
sampler jitter.  Table 2 also shows that the resulting residual 
jitter is only weakly dependent on the initial jitter, as 
expected from the simulations in Section IV, and that the 
algorithm can improve a high jitter measurement by as 
much as 34× (from 8.6 ps to 0.25 ps). 

VII. DEMONSTRATION PROGRAM 
 
Our program for post-processing acquired 

waveforms for timebase correction has a graphical user 
interface that can be used in a Microsoft Windows [26] 
environment. The program, available at 

http://www.boulder.nist.gov/div815/HSM_Project/HSMP.h
tm, contains examples of how the software can be used to 
correct single or multiple measurements. These examples 
can be accessed through the program’s help menu under 
“Getting Started”. Instructions are also given on how to call 
the program from other programs with ActiveX [26] 
capability. 

VIII. CONCLUSION 
We have shown how to simultaneously estimate 

the systematic and random timebase errors of measured 
sinusoidal reference signals. Using the parallel 
(simultaneous) sampling in our oscilloscope allows us to 
use this estimate to correct the timebase errors in a 
simultaneously measured waveform by roughly a factor of 
10, effectively replacing the timebase of the oscilloscope 
with a timebase provided by the measured sinusoids.  We 
require only that the oscilloscope timebase have enough 
accuracy to allow us to discriminate between consecutive 
cycles of the clock signal.  This allows us to correct the 
timing errors that might be present with long waveforms or 
large jitter, and lowers the noise floor significantly in most 
measurements without averaging.   In addition to the 
examples described in this paper, we have also 
demonstrated clear reduction of effects due to random jitter 
and timebase distortion in measurements of 10 Gbit/s data 
sequences that are 52 ns (53248 samples) long and 
multisine signals that are 500 ns (40960 samples) long. 
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Figure 7.  Comparison of some corrected and averaged measurements.  Measurements with initial jitter of 1.4 ps and 
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as 1.4 ps at some times. 
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our manuscript. 

X. APPENDIX 

 If 2
τσ  and 2

εσ  are not known or can not be 
accurately estimated, the following procedure may be used 
to obtain an approximate estimate of the relative weight 

2 2
τ εσ σ . The procedure is based on the assumption that an 

adequate TBD estimate is available as an initial guess of the 
timebase error. 
 The procedure first estimates the timing errors 
using 2 2

0 1 ns /Vw wε = = . Let Sδ  and Sε  be the weighted 
sums of squared residuals for δ  and ε , respectively, from 
the ODR fit. If S Sδ ε≈ , then the correct weight has been 
used. Otherwise, use the new weight 0w w S Sε δ ε=  in the 
next ODR fit. And repeat this process until S Sδ ε≈ . For 
example, for the case where εσ =0.1% of the fundamental 
and τσ =6.4 ps in the simulated experiment of section V, 
using wε =1 ns2/V2 in the ODR fit produces Sδ =2.124 and 
Sε =0.02572 for the first set of measurements. (For 
illustration, we only report the results for the first set of 
measurements. Results for the other 99 sets of 
measurements are very similar.) A new weight of 
wε =(2.124)/(0.02572)=82.58 in the next ODR fit produces 
Sδ =2.173 and Sε =0.09923. The next weight to use is 
wε =(82.58 ns2/V2 ) ⋅ (2.173)/(0.09923)=1808.388, which 
produces Sδ =2.174 and Sε =2.164. The correct weight for 
this problem is 1820.4 ns2/V2 . For the case where εσ =5% 
of the fundamental and τσ =3.2 ps, one iteration yields a 
weight of 0.188 ns2/V2, which is close to the correct weight 
of 0.182 ns2/V2. For other combinations of εσ  and τσ , it 
generally requires 1 or 2 iterations to obtain a “close” 
estimate of the correct relative weight. 
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